资源类型

期刊论文 44

年份

2023 3

2022 8

2021 3

2020 3

2019 1

2018 2

2017 3

2016 3

2015 5

2014 4

2013 2

2011 2

2009 2

2008 1

2001 1

展开 ︾

关键词

Aphanomyces euteiches 1

NO3-N 1

copula 1

不确定性与裕度的量化 1

住宅建筑 1

作用方式 1

南大洋 1

变化性和脆弱性 1

合理的生物发现 1

地下水 1

复杂装备 1

多变量水文频率分析 1

天然产物 1

建模方法 1

探测工程技术 1

数量性状基因座 1

柔性负荷 1

根腐病 1

概率分布 1

展开 ︾

检索范围:

排序: 展示方式:

Quantification of emission variability for off-road equipment in China based on real-world measurements

《环境科学与工程前沿(英文)》 2022年 第16卷 第2期 doi: 10.1007/s11783-021-1455-x

摘要:

• Emissions from 53 in-use diesel-fueled off-road equipment were measured.

关键词: Off-road equipment     Portable emission measurement system (PEMS)     Real-world emissions     Diesel engine    

Variability of waste copper slag concrete and its effect on the seismic safety of reinforced concrete

《结构与土木工程前沿(英文)》 2022年 第16卷 第1期   页码 117-130 doi: 10.1007/s11709-021-0788-7

摘要: Proven research output on the behavior of structures made of waste copper slag concrete can improve its utilization in the construction industry and thereby help to develop a sustainable built environment. Although numerous studies on waste copper slag concrete can be found in the published literature, no research has focused on the structural application of this type of concrete. In particular, the variability in the strength properties of waste copper slag concrete, which is required for various structural applications, such as limit state design formulation, reliability-based structural analysis, etc., has so far not attracted the attention of researchers. This paper quantifies the uncertainty associated with the compressive-, flexural- and split tensile strength of hardened concrete with different dosages of waste copper slag as fine aggregate. Best-fit probability distribution models are proposed based on statistical analyses of strength data generated from laboratory experiments. In addition, the paper presents a reliability-based seismic risk assessment of a typical waste copper slag incorporated reinforced concrete framed building, considering the proposed distribution model. The results show that waste copper slag can be safely used for seismic resistant structures as it results in an identical probability of failure and dispersion in the drift demand when compared with a conventional concrete building made of natural sand.

关键词: waste copper slag     quantification of variability     goodness-of-fit test     seismic risk assessment     PSDM    

Soil spatial variability impact on the behavior of a reinforced earth wall

Adam HAMROUNI, Daniel DIAS, Badreddine SBARTAI

《结构与土木工程前沿(英文)》 2020年 第14卷 第2期   页码 518-531 doi: 10.1007/s11709-020-0611-x

摘要: This article presents the soil spatial variability effect on the performance of a reinforced earth wall. The serviceability limit state is considered in the analysis. Both cases of isotropic and anisotropic non-normal random fields are implemented for the soil properties. The Karhunen-Loève expansion method is used for the discretization of the random field. Numerical finite difference models are considered as deterministic models. The Monte Carlo simulation technique is used to obtain the deformation response variability of the reinforced soil retaining wall. The influences of the spatial variability response of the geotechnical system in terms of horizontal facing displacement is presented and discussed. The results obtained show that the spatial variability has an important influence on the facing horizontal displacement as well as on the failure probability.

关键词: reinforced earth wall     geosynthetic     random field     spatial variability     Monte Carlo simulation    

Fuel variability effect on flickering frequency of diffusion flames

Jizhao LI, Yang ZHANG

《能源前沿(英文)》 2009年 第3卷 第2期   页码 134-140 doi: 10.1007/s11708-009-0034-9

摘要: It is known that fuel variability of different gas suppliers may cause combustion instability in a gas turbine combustor. Mechanisms that control the time scale of the heat release oscillations and acoustic pressure perturbations are both physical and chemical in nature, and thus can be influenced by changes in fuel composition. The intent of this study is to investigate the fuel variability on the flickering frequency of diffusion flames in the hope of understanding some of the fundamental aspects of fuel variability effect on the dynamics of combustion. Experiments were conducted at atmospheric pressure with a matrix of methane and propane blends. An optical fibre system was applied to capture simultaneously the flame flickering at two different light frequencies (430 nm and 516 nm), which provided a means of comparing the chemistry change. It was found that the low frequency oscillation of flow and flame structures depended only weakly on the exit velocities of the fuel, while ambient conditions had a significant effect on flickering frequencies and spectrum. The results of using CH and C H as test fuels at different flow rates showed very little variations, with peak frequencies at 11-13 Hz. When the jet flame was not disturbed, harmonics to at least the third mode were obtained in most of these cases. However, the cases which included CH /C H splits of 90/10, 85/15 and 80/20 by volume showed that unstable flickering frequencies and flame harmonics were not observed. When a mixture of methane/propane at a ratio of 1:1 was used the peak flickering frequency was around 6 Hz, and slight disturbance in the environment would cause the harmonics to disappear. Mechanisms thought to produce changes in the dynamic response and frequency harmonics were discussed.

关键词: fuel variability     flickering frequency     diffusion flames     dynamics of combustion    

Treatment, residual chlorine and season as factors affecting variability of trihalomethanes in small

Roberta DYCK,Geneviève COOL,Manuel RODRIGUEZ,Rehan SADIQ

《环境科学与工程前沿(英文)》 2015年 第9卷 第1期   页码 171-179 doi: 10.1007/s11783-014-0750-1

摘要: Seasonal variability in source water can lead to challenges for drinking water providers related to operational optimization and process control in treatment facilities. The objective of this study is to investigate seasonal variability of water quality in municipal small water systems (<3000 residents) supplied by surface waters. Residual chlorine and trihalomethanes (THM) were measured over seven years (2003–2009). Comparisons are made within each system over time, as well as between systems according to the type of their treatment technologies. THM concentrations are generally higher in the summer and autumn. The seasonal variability was generally more pronounced in systems using chlorination plus additional treatment. Chloroform, total THM (TTHM) and residual chlorine concentrations were generally lower in systems using chlorination plus additional treatment. Conversely, brominated THM concentrations were higher in systems using additional treatment. Residual chlorine was highest in the winter and lowest in the spring and summer. Seasonal variations were most pronounced for residual chlorine in systems with additional treatment. There was generally poor correlation between THM concentrations and concentrations of residual chlorine. Further study with these data will be beneficial in finding determinants and indicators for both quantity and variability of disinfection byproducts and other water quality parameters.

关键词: drinking water     residual chlorine     seasonal variability     small municipal systems     treatment technologies     trihalomethanes    

Quantifying and mapping spatial variability of Shanghai household carbon footprints

Shangguang YANG,Chunlan WANG,Kevin LO,Mark WANG,Lin LIU

《能源前沿(英文)》 2015年 第9卷 第1期   页码 115-124 doi: 10.1007/s11708-015-0348-8

摘要: Understanding the spatial variability of household carbon emissions is necessary for formulating sustainable and low-carbon energy policy. However, data on household carbon emissions is limited in China, the world’s largest greenhouse gases emitter. This study quantifies and maps household carbon emissions in Shanghai using a city-wide household survey. The findings reveal substantial spatial variability in household carbon emissions, especially in transport-related emissions. Low emission clusters are founded in Hongkou, Xuhui, Luwan, Jinshan, and Fengxian. High emission clusters are located in Jiading and Pudong. Overall, the spatial pattern of household carbon emissions in Shanghai is donut-shaped: lowest in the urban core, increasing in the surrounding suburban areas, and declining again in the urban fringe and rural regions. The household emissions are correlated with a number of housing and socioeconomic factors, including car ownership, type of dwelling, size of dwelling, age of dwelling, and income. The findings underscore the importance of a localized approach to low-carbon policy-making and implementation.

关键词: household carbon emissions     spatial variability     energy policy     Shanghai     China    

Distribution and temporal variability of the solar resource at a site in south-east Norway

Muyiwa S. ADARAMOLA

《能源前沿(英文)》 2016年 第10卷 第4期   页码 375-381 doi: 10.1007/s11708-016-0426-6

摘要: Globally, solar energy is expected to play a significant role in the changing face of energy economies in the near future. However, the variability of this resource has been the main barrier for solar energy development in most locations around the world. This paper investigated the distribution and variability of solar radiation using the a 10-year (2006 to 2015) data collected at Sørås meteorological station located at latitude 59° 39′ N and longitude 10° 47′E, about 93.3 m above sea level (about 30 km from Oslo), in south-eastern part of Norway. It is found that on annual basis, the total number of days with a global solar radiation of less than 1 kWh/(m ·d) is 120 days while the total number of days with an expected global solar radiation greater than 3 kWh/(m ·d) is 156 days (42.74%) per year. The potential energy output from a horizontally placed solar collector in these 156 days is approximately 75% of the estimated annual energy output. In addition, it is found that the inter-annual coefficient of variation of the global solar radiation is 4.28%, while that of diffuse radiation is 4.96%.

关键词: coefficient of variation     global solar radiation     diffuse ratio     albedo     PV energy systems    

A new damage quantification approach for shear-wall buildings using ambient vibration data

Seung-Hun SUNG,Hyung-Jo JUNG

《结构与土木工程前沿(英文)》 2015年 第9卷 第1期   页码 17-25 doi: 10.1007/s11709-014-0278-2

摘要: This paper presents a new approach to estimate damage severity for shear-wall buildings using diagonal terms of a modal flexibility matrix estimated from dynamic properties. This study aims to provide a fundamental concept for quantifying the damage of realistic buildings by investigating an idealized shear-wall building. Numerical studies were performed on a 5-story shear-wall building model to validate the applicability of the presented approach, using two damage patterns. With the numerical simulations, the proposed approach accurately determined the damage ratio of the specimens. Experiments were also conducted on a 5-story shear-wall building model for which the system parameters were almost the same as those in numerical simulations. The estimated damage-quantification results from the experimental validations demonstrated that the performance of the presented method for shear-wall buildings was both suitable and accurate.

关键词: damage identification     modal flexibility     damage quantification     shear-wall buildings    

Classification and quantification of excavated soil and construction sludge: A case study in Wenzhou,

《结构与土木工程前沿(英文)》 2022年 第16卷 第2期   页码 202-213 doi: 10.1007/s11709-021-0795-8

摘要: With rapid urbanization in China, a large amount of excavated soil and construction sludge is being generated from geotechnical and underground engineering. For sustainable management of these construction wastes, it is essential to quantify their production first. The present study has attempted to classify the excavated soil and construction sludge according to their composition and geotechnical properties (particle size, water content, plasticity index). Based on these classifications, a new approach was proposed to quantify the production. The said approach was based on multi-source information, such as the urban topographic map, geological survey reports, urban master plan, and remote sensing images. A case study in Wenzhou city of China was also pursued to illustrate the validity of the newly developed approach. The research showed that in 2021–2025, the total excavated soils and construction sludge production in Wenzhou would reach 107.5 × 106 and 81.7 × 106 m3, respectively. Furthermore, the excavated soil was classified into the miscellaneous fill, crust clay, muddy clay and mud with silty sand. Likewise, the construction sludge was classified as liquid sludge and paste-like sludge. The classification and quantification can serve as guidance for disposal and recycling, thereby leading to high-level management of waste disposal.

关键词: excavated soil     construction sludge     geotechnical and underground engineering     production     classification    

Shallow foundation response variability due to soil and model parameter uncertainty

Prishati RAYCHOWDHURY,Sumit JINDAL

《结构与土木工程前沿(英文)》 2014年 第8卷 第3期   页码 237-251 doi: 10.1007/s11709-014-0242-1

摘要: Geotechnical uncertainties may play crucial role in response prediction of a structure with substantial soil-foundation-structure-interaction (SFSI) effects. Since the behavior of a soil-foundation system may significantly alter the response of the structure supported by it, and consequently several design decisions, it is extremely important to identify and characterize the relevant parameters. Moreover, the modeling approach and the parameters required for the modeling are also critically important for the response prediction. The present work intends to investigate the effect of soil and model parameter uncertainty on the response of shallow foundation-structure systems resting on dry dense sand. The SFSI is modeled using a beam-on-nonlinear-winkler-foundation (BNWF) concept, where soil beneath the foundation is assumed to be an assembly of discrete, nonlinear elements composed of springs, dashpots and gap elements. The sensitivity of both soil and model input parameters on shallow foundation responses are investigated using first-order second-moment (FOSM) analysis and Monte Carlo simulation through Latin hypercube sampling technique. It has been observed that the degree of accuracy in predicting the responses of the shallow foundation is highly sensitive soil parameters, such as friction angle, Poisson’s ratio and shear modulus, rather than model parameters, such as stiffness intensity ratio and spring spacing; indicating the importance of proper characterization of soil parameters for reliable soil-foundation response analysis.

关键词: shallow foun dation     sensitivity analysis     centrifuge data     first-order-second-moment (FOSM) method     parameter uncertainty    

What have we known so far for fluorescence staining and quantification of microplastics: A tutorial review

Shengdong Liu, Enxiang Shang , Jingnan Liu , Yining Wang , Nanthi Bolan , M.B. Kirkham , Yang Li

《环境科学与工程前沿(英文)》 2022年 第16卷 第1期   页码 8-8 doi: 10.1007/s11783-021-1442-2

摘要: Understanding the fate and toxicity of microplastics (MPs,<5 mm plastic particles) is limited by quantification methods. This paper summarizes the methods in use and presents new ones. First, sampling and pretreatment processes of MPs, including sample collection, digestion, density separation, and quality control are reviewed. Then the promising and convenient staining procedures and quantification methods for MPs using fluorescence dyes are reviewed. The factors that influence the staining of MPs, including their physicochemical properties, are summarized to provide an optimal operation procedure. In general, the digestion step is crucial to eliminate natural organic matter (NOM) to avoid interference in quantification. Chloroform was reported to be the most appropriate solvent, and 10–20 μg/mL are recommended as optimal dye concentrations. In addition, a heating and cooling procedure is recommended to maintain the fluorescence intensity of MPs for two months. After staining, a fluorescence microscope is usually used to characterize the morphology, mass, or number of MPs, but compositional analysis cannot be determined with it. These fluorescence staining methods have been implemented to study MP abundance, transport, and toxicity and have been combined with other chemical characterization techniques, such as Fourier transform infrared spectroscopy and Raman spectroscopy. More studies are needed to focus on the synthesis of novel dyes to avoid NOM’s interference. They need to be combined with other spectroscopic techniques to characterize plastic composition and to develop image-analysis methods. The stability of stained MPs needs to be improved.

Interactions between metal ions and the biopolymer in activated sludge: quantification and effects of

Yun Zhou, Siqing Xia, Binh T. Nguyen, Min Long, Jiao Zhang, Zhiqiang Zhang

《环境科学与工程前沿(英文)》 2017年 第11卷 第1期 doi: 10.1007/s11783-017-0898-6

摘要: The biopolymer showed two protein-like fluorescence peaks (peaks A and B). Interactions of Pb(II) and biopolymer were quantified at various system pH values. System pH values significantly affect the quenching constant values for both peaks. Peak B plays a more important role in the interactions than peak A. Removal mechanism of metal ions by activated sludge system was further disclosed. The quantification and effects of system pH value on the interactions between Pb(II) and the biopolymer from activated sludge were investigated. The biopolymer had two protein-like fluorescence peaks (Ex/Em= 280 nm/326–338 nm for peak A; Ex/Em= 220–230 nm/324–338 nm for peak B). The fluorescence intensities of peak B were higher than those of peak A. The fluorophores of both peaks could be largely quenched by Pb(II), and the quencher dose for peak B was about half of that for peak A. The modified Stern-Volmer equation well depicted the fluorescence quenching titration. The quenching constant (Ka) values for both peaks decreased with rising system pH value, and then sharply decreased under alkaline conditions. It could be attributed to that the alkaline conditions caused the reduction of available Pb(II) due to the occurrence of Pb(OH)2 sediments. The Ka values of peak B were bigger than those for peak A at the same system pH values. Accordingly, the aromatic protein (peak B) plays the key role in the interactions between metal ions and the biopolymer.

关键词: Metal ions     Biopolymer     Activated sludge     Three-dimensional excitation emission matrix (3D-EEM)     Fluorescence regional integration (FRI) technique     Quantification    

Accurate quantification of 3′-terminal 2′-O-methylated small RNAs by utilizing oxidative deep sequencing

《医学前沿(英文)》 2022年 第16卷 第2期   页码 240-250 doi: 10.1007/s11684-021-0909-7

摘要: The continuing discoveries of novel classes of RNA modifications in various organisms have raised the need for improving sensitive, convenient, and reliable methods for quantifying RNA modifications. In particular, a subset of small RNAs, including microRNAs (miRNAs) and Piwi-interacting RNAs (piRNAs), are modified at their 3′-terminal nucleotides via 2′-O-methylation. However, quantifying the levels of these small RNAs is difficult because 2′-O-methylation at the RNA 3′-terminus inhibits the activity of polyadenylate polymerase and T4 RNA ligase. These two enzymes are indispensable for RNA labeling or ligation in conventional miRNA quantification assays. In this study, we profiled 3′-terminal 2′-O-methyl plant miRNAs in the livers of rice-fed mice by oxidative deep sequencing and detected increasing amounts of plant miRNAs with prolonged oxidation treatment. We further compared the efficiency of stem-loop and poly(A)-tailed RT-qPCR in quantifying plant miRNAs in animal tissues and identified stem-loop RT-qPCR as the only suitable approach. Likewise, stem-loop RT-qPCR was superior to poly(A)-tailed RT-qPCR in quantifying 3′-terminal 2′-O-methyl piRNAs in human seminal plasma. In summary, this study established a standard procedure for quantifying the levels of 3′-terminal 2′-O-methyl miRNAs in plants and piRNAs. Accurate measurement of the 3′-terminal 2′-O-methylation of small RNAs has profound implications for understanding their pathophysiologic roles in biological systems.

关键词: small RNAs     2′-O-methylation     sequencing     RT-qPCR    

Large-scale App privacy governance

《工程管理前沿(英文)》   页码 640-652 doi: 10.1007/s42524-022-0228-y

摘要: Recently, the problem of mobile applications (Apps) leaking users’ private information has aroused wide concern. As the number of Apps continuously increases, effective large-scale App governance is a major challenge. Currently, the government mainly filters out Apps with potential privacy problems manually. Such approach is inefficient with limited searching scope. In this regard, we propose a quantitative method to filter out problematic Apps on a large scale. We introduce Privacy Level (P-Level) to measure an App’s probability of leaking privacy. P-Level is calculated on the basis of Permission-based Privacy Value (P-Privacy) and Usage-based Privacy Value (U-Privacy). The former considers App permission setting, whereas the latter considers App usage. We first illustrate the privacy value model and computation results of both values based on real-world dataset. Subsequently, we introduce the P-Level computing model. We also define the P-Level computed on our dataset as the PL standard. We analyze the distribution of average usage and number of Apps under the levels given in the PL standard, which may provoke insights into the large-scale App governance. Through P-Privacy, U-Privacy, and P-Level, potentially problematic Apps can be filtered out efficiently, thereby making up for the shortcoming of being manual.

关键词: privacy risk     Privacy Level     quantification     large-scale App governance    

The effect of texture and irrigation on the soil moisture vertical-temporal variability in an urban artificial

Xiaofeng ZHANG,Xu ZHANG,Guanghe LI

《环境科学与工程前沿(英文)》 2015年 第9卷 第2期   页码 269-278 doi: 10.1007/s11783-014-0672-y

摘要: Soil moisture variability in natural landscapes has been widely studied; however, less attention has been paid to its variability in the urban landscapes with respect to the possible influence of texture stratification and irrigation management. Therefore, a case study was carried out in the Beijing Olympic Forest Park to continuously monitor the soil in three typical profiles from 26 April to 11 November 2010. The texture stratification significantly affected the vertical distribution of moisture in the non-irrigated profile where moisture was mostly below field capacity. In the profile where irrigation was sufficient to maintain moisture above field capacity, gravity flow led to increased moisture with depth and thus eliminated the influence of texture. In the non-irrigated sites, the upper layer (above 80 cm) exhibited long-term moisture persistence with the time scale approximating the average rainfall interval. However, a coarse-textured layer weakened the influence of rainfall, and a fine-textured layer weakened the influence of evapotranspiration, both of which resulted in random noise-like moisture series in the deeper layers. At the irrigated site, frequent irrigation neutralized the influence of evapotranspiration in the upper layer (above 60 cm) and overshadowed the influence of rainfall in the deeper layer. As a result, the moisture level in the upper layer also behaved as a random noise-like series; whereas due to deep transpiration, the moisture of the deep layer had a persistence time-scale longer than a month, consistent with characteristic time-scales found for deep transpiration.

关键词: moisture vertical distribution     moisture temporal variation     texture stratification     irrigation     meteorological forcing     urban landscape    

标题 作者 时间 类型 操作

Quantification of emission variability for off-road equipment in China based on real-world measurements

期刊论文

Variability of waste copper slag concrete and its effect on the seismic safety of reinforced concrete

期刊论文

Soil spatial variability impact on the behavior of a reinforced earth wall

Adam HAMROUNI, Daniel DIAS, Badreddine SBARTAI

期刊论文

Fuel variability effect on flickering frequency of diffusion flames

Jizhao LI, Yang ZHANG

期刊论文

Treatment, residual chlorine and season as factors affecting variability of trihalomethanes in small

Roberta DYCK,Geneviève COOL,Manuel RODRIGUEZ,Rehan SADIQ

期刊论文

Quantifying and mapping spatial variability of Shanghai household carbon footprints

Shangguang YANG,Chunlan WANG,Kevin LO,Mark WANG,Lin LIU

期刊论文

Distribution and temporal variability of the solar resource at a site in south-east Norway

Muyiwa S. ADARAMOLA

期刊论文

A new damage quantification approach for shear-wall buildings using ambient vibration data

Seung-Hun SUNG,Hyung-Jo JUNG

期刊论文

Classification and quantification of excavated soil and construction sludge: A case study in Wenzhou,

期刊论文

Shallow foundation response variability due to soil and model parameter uncertainty

Prishati RAYCHOWDHURY,Sumit JINDAL

期刊论文

What have we known so far for fluorescence staining and quantification of microplastics: A tutorial review

Shengdong Liu, Enxiang Shang , Jingnan Liu , Yining Wang , Nanthi Bolan , M.B. Kirkham , Yang Li

期刊论文

Interactions between metal ions and the biopolymer in activated sludge: quantification and effects of

Yun Zhou, Siqing Xia, Binh T. Nguyen, Min Long, Jiao Zhang, Zhiqiang Zhang

期刊论文

Accurate quantification of 3′-terminal 2′-O-methylated small RNAs by utilizing oxidative deep sequencing

期刊论文

Large-scale App privacy governance

期刊论文

The effect of texture and irrigation on the soil moisture vertical-temporal variability in an urban artificial

Xiaofeng ZHANG,Xu ZHANG,Guanghe LI

期刊论文